首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11318篇
  免费   787篇
  国内免费   562篇
电工技术   1411篇
综合类   902篇
化学工业   2901篇
金属工艺   529篇
机械仪表   620篇
建筑科学   401篇
矿业工程   228篇
能源动力   309篇
轻工业   379篇
水利工程   83篇
石油天然气   271篇
武器工业   96篇
无线电   1599篇
一般工业技术   1717篇
冶金工业   224篇
原子能技术   242篇
自动化技术   755篇
  2024年   15篇
  2023年   179篇
  2022年   277篇
  2021年   315篇
  2020年   335篇
  2019年   265篇
  2018年   345篇
  2017年   405篇
  2016年   420篇
  2015年   368篇
  2014年   545篇
  2013年   712篇
  2012年   760篇
  2011年   1022篇
  2010年   633篇
  2009年   655篇
  2008年   629篇
  2007年   648篇
  2006年   632篇
  2005年   497篇
  2004年   446篇
  2003年   408篇
  2002年   325篇
  2001年   278篇
  2000年   244篇
  1999年   178篇
  1998年   160篇
  1997年   122篇
  1996年   140篇
  1995年   127篇
  1994年   102篇
  1993年   87篇
  1992年   83篇
  1991年   64篇
  1990年   41篇
  1989年   49篇
  1988年   42篇
  1987年   24篇
  1986年   17篇
  1985年   17篇
  1984年   9篇
  1983年   8篇
  1982年   8篇
  1981年   6篇
  1980年   7篇
  1979年   2篇
  1978年   5篇
  1975年   3篇
  1974年   2篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Carbon dioxide (CO2) and methane (CH4) are the primary greenhouse gases (GHGs) that drive global climate change. CO2 reforming of CH4 or dry reforming of CH4 (DRM) is used for the simultaneous conversion of CO2 and CH4 into syngas and higher hydrocarbons. In this study, DRM was investigated using Ag–Ni/Al2O3 packing and Sn–Ni/Al2O3 packing in a parallel plate dielectric barrier discharge (DBD) reactor. The performance of the DBD reactor was significantly enhanced when applying Ag–Ni/Al2O3 and Sn–Ni/Al2O3 due to the relatively high electrical conductivity of Ag and Sn as well as their anti-coke performances. Using Ag–Ni/Al2O3 consisting of 1.5 wt% Ag and 5 wt% Ni/Al2O3 as the catalyst in the DBD reactor, 19% CH4 conversion, 21% CO2 conversion, 60% H2 selectivity, 81% CO selectivity, energy efficiency of 7.9% and 0.74% (by mole) coke formation were achieved. In addition, using Sn–Ni/Al2O3, consisting of 0.5 wt% Sn and 5 wt% Ni/Al2O3, 15% CH4 conversion, 19% CO2 conversion, 64% H2 selectivity, 70% CO selectivity, energy efficiency of 6.0%, and 2.1% (by mole) coke formation were achieved. Sn enhanced the reactant conversions and energy efficiency, and resulted in a reduction in coke formation; these results are comparable to that achieved when using the noble metal Ag. The decrease in the formation of coke could be correlated to the increase in the CO selectivity of the catalyst. Good dispersion of the secondary metals on Ni was found to be an important factor for the observed increases in the catalyst surface area and catalytic activities. Furthermore, the stability of the catalytic reactions was investigated for 1800 min over the 0.5 wt% Ag-5 wt% Ni/Al2O3 and 0.5 wt% Sn-5 wt% Ni/Al2O3 catalysts. The results showed an increase in the reactant conversions with an increase in the reaction time.  相似文献   
2.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
3.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
4.
The solid solutions based on the pyrochlore-type system Bi2MgNb2-xTaxO9 were formed in the compositional range х = 0–2.0 (Bi1·6Mg0·8Nb1.6-tTatO7.2, t = 0–1.6). The Rietveld method was used to refine the structure for Bi2MgNb2-xTaxO9 (x = 0, 1.0, 2.0). The increasing tantalum content led to the slight decrease in the cubic unit cell parameters from 10.56934 (4) Å for x = 0 and 10.54607 (3) Å for x = 2 (sp.gr. Fd-3m:2). At the same time, tantalum additions suppressed grain growth in the pyrochlore ceramics during sintering and made it possible to obtain materials with an average grain size of 1–2 μm (Bi1·6Mg0·8Ta1·6O7.2). The increase in the Ta5+ concentration led to the decrease in the dielectric permeability from 104 (Bi1·6Mg0·8Nb1·6O7.2) to 20 (Bi1·6Mg0·8Ta1·6O7.2) at room temperature, while the dielectric loss tangent remained lower than 0.002, which is due to the small grain size and the high porosity of the samples. An increase in temperature has practically no effect on the values of the dielectric permittivity in the entire frequency range. The samples have weak through conductivity. The activation energies of electrical conductivity varied in the range of 0.84–1.00 eV, and the less tantalum, the lower the activation energy. The electrical properties of the samples at 200 Hz to 1 MHz are described by the simplest parallel scheme.  相似文献   
5.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
6.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
7.
Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40−48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6–40 % isolated yield, which compares favorably to established chemical routes.  相似文献   
8.
《Ceramics International》2021,47(23):32747-32755
To investigate the nonstoichiometric effect of (Bi0.5Na0.5)TiO3 (BNT) ceramics on their properties, we propose a novel chemical expression, (Bi0.5+xNa0.5−3x)TiO3. The nonstoichiometric effect of BNT can be explored in compounds with this composition without being hampered by the charge imbalance problem. With x ranging from −0.02 to 0.02, we find that the morphological, dielectric, ferroelectric, and electrostrain properties differ considerably between Na-rich and Bi-rich ceramic samples. The average grain size (AGS) increased significantly in Na-rich samples compared to that in stoichiometric BNT, while it decreased slightly in Bi-rich samples. The dielectric characteristics measured from 30 °C to 500 °C indicate that conductivity is activated in Na-rich nonstoichiometric samples but is effectively suppressed in Bi-rich nonstoichiometric samples. The ferroelectric properties also show the same trend. In Na-rich samples, elliptical polarization against electric field (P-E) hysteresis loops were detected, indicating a conductive character induced by high electric field loading. However, saturated P-E loops are observed in Bi-rich samples with well-inhibited conductivity. Furthermore, compared to stoichiometric BNT and nonstoichiometric x = 0.02 Bi-rich samples, (Bi0.5+xNa0.5−3x)TiO3 samples with x = 0.01 exhibit higher electrostrain from 30 °C to 150 °C. Based on the assumption of charge balance, our findings indicated that the presence of 1 mol% excess Bi would facilitate significant improvement in the dielectric, ferroelectric, and electrostrain properties of BNT and BNT-based systems.  相似文献   
9.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
10.
《Ceramics International》2020,46(7):9240-9248
The effects of Sr2+ substitution for Ba2+ on phase structure, microstructure, dielectric and electric properties for Ba4-xSrxSmFe0.5Nb9.5O30 (x = 0, 1, 2, 3 and 4) ceramics were systematically researched. X-ray diffraction patterns show that Ba4-xSrxSmFe0.5Nb9.5O30 (x = 0, 1, 2 and 3) ceramics are tetragonal tungsten bronze compound with a space group of P4bm, while the sample for x = 4 is an orthorhombic structure compound. The result can be corroborated by the analysis of Raman spectroscopy. As the Sr2+ contents increase from 0 to 3, the full width at half maximum of Raman lines of all samples increase gradually, indicating that the degree of lattice distortion increase. All tetragonal tungsten bronze ceramics exhibited a broad permittivity peaks, accompanied by frequency dispersion, indicating all samples are relaxor. The electrical properties of BSSFN ceramics were further studied by complex impedance spectroscopy. XPS spectrum shows that Fe2+ and Fe3+ coexist in Ba4-xSrxSmFe0.5Nb9.5O30 ceramics, and their proportion varies with the concentration of Sr2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号